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Abstract

Current parallel graphics algorithms minimise memory access la-
tency by tracing packets of coherent rays. This coherency, however,
breaks down after several bounces, and is unsuited to acceleration
techniques such as selective rendering. This paper presents an unbi-
ased path tracing algorithm which is insensitive to the coherency of
the rays traced, allowing it to run on diverse architecturesincluding
massively SIMD processors. Bins of path-atoms are created and
processed to form a path tracing circular buffer. Latency ishidden
by n-buffering the load/save operations between bins. We demon-
strate our approach as an implementation on the massively parallel
SIMD architecture, the ClearSpeed CSX600.
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1 Introduction

The Rendering Equation as first presented in [Kajiya 1986] de-
scribed all the illumination at any given point in a scene viaan
integral equation representing all the reflections in the scene. In the
same paper the concept of path tracing was introduced, a stochas-
tic method for solving the rendering equation. Non branching
paths from the camera to light sources are traced through each in-
tersection with the scene geometry, as compared to Whitted ray
tracing [Whitted 1980] where at each intersection both specular
and shadow rays are sampled. In [Cook et al. 1984] this is ex-
tended such that at each intersection, the entire hemisphere is sam-
pled to gather an estimate. Path tracing requires many more sam-
ples per pixel than ray-tracing, but delivers an unbiased result.
Bi-directional path tracing was independently developed by both
[Lafortune and Willems 1993] and [Veach and Guibas 1994], after
noting that not all significant light transport paths are easily found
from starting at the camera.

Both path tracing and ray tracing require a lot of computational
power to achieve a high-fidelity result. Traditional methods to re-
duce computational time by parallel processing have exploited co-
herence. However, such techniques limit the use of other accelera-
tion techniques, such as selective rendering, and are not well suited
to modern wide-width SIMD architectures.

In this paper we present a novel approach which is able to ex-
ploit the performance of modern wide-width SIMD processorsand
significantly reduces latency, not through coherence, but by data
buffering. We reformulate the recursive nature of rendering into a
set of basic atomic operations, which are inherently suitedto par-
allelisation. The current way of formulating rendering does not
map itself well to all architectures, and we show that if we break
the computation into simple atomic instructions we can adapt and
group such instructions according to the hardware requirments.

We demonstrate our approach on the ClearSpeed CSX architecture,
a massively-parallel SIMD machine. We show the latency can be

reduced with careful grouping of atomic instructions into bins. This
allows us to reduce latency and improve perfromance withoutre-
lying on the coherence commonly associated with fast ray tracing
methods, enabling our method to be used for multiple bounce global
illumination (GI) solutions and selective rendering.

2 Related Work

Previous parallel rendering work has tended to focus on ray trac-
ing, and on the use of commodity CPUs or GPUs. In [Purcell
2004], significant speedup was achieved through adapting the ray
tracing algorithm to a stream processor model. Purcell alsoshowed
in [Purcell et al. 2003] how the photon mapping algorithm could be
adapted to run on comodity GPUs. However this is only an approx-
imation of true GI methods.

An alternative approach is to design hardware specifically for trac-
ing rays. In [Sven Woop and Slusallek 2005] a hardware ray-tracer
was implemented. Ray-scene intersection using k-d trees, apro-
grammable shading unit and the ability to handle the recursion nec-
essary for ray tracing each have dedicated hardware on the chip.
Specific hardware has the disadvantage of needing chip redesign if
a new algorimthm emerges, such as the new acceleration structures
being developed which are optimised for dynamic scenes [Wald
et al. ].

Fast ray-tracing has now become possible on commidity PCs. The
concept of ray packets [Wald et al. 2001] has come to dominate
attempts to harness the new SIMD instructions in modern CPUs.
The original techniques of grouping rays into coherent packets to
make use of the 4-SIMD CPU instructions has been extended to use
much larger packets. These techniques form a conservative bound
to the ray packets and use this to avoid unnecessary intersection
tests and traversal steps. Dmitriev et al. [Dmitriev et al. 2004]
first proposed this for triangle intersections, with Reshetov et al.
[Reshetov et al. 2005] extending this to kd-tree traversal.This was
then developed further to both grids [Wald et al. 2006] and BVHs
[Wald et al. 2007a]. However, all these techniques fundamentally
rely on using coherent ray packets.

Perceptually adaptive rendering techniques have achievedsignifi-
cant performance improvements for global illumination algorithms
by exploiting knowledge of the human visual system [Myszkowski
et al. 2001]. In particular, selective rendering, computesthose ar-
eas of a scene to which a viewer is attending in high quality. The
remainder of the scene is rendered at a much lower quality, and
thus at a much lower computational cost, without the viewer being
aware of this quality difference [Yee et al. 2001; Debattista 2006;
Chalmers et al. 2006]. Adaptive techniques in general are not nat-
urally coherent [Dubla et al. 2008] as the viewer may be attending
to non-coherent regions throughout the scene.



3 Incoherent Path-Atom Binning Theory

and Framework

Current parallel ray tracing techniques have become very focused
on the concept of ray packets, as introduced in [Wald et al. 2001].
The original intent of ray packets was to minimise the latency of
loading scene data before processing it. While this technique works
well for narrow-width SIMD processors and primary rays, forlarge
width SIMD global illumination it has severe drawbacks. Raypack-
ets provide speed up where up to 8×8 and 16×16 packets are used,
usually however this breaks down for larger packets, with a con-
sequential loss of performance. Also, the coherence breaksdown
quickly, and the current work focuses on a single bounce at most
[Wald et al. 2007b]. In [Boulos et al. 2007], the authors explored
whether packetised ray tracing techniques could be extended to sev-
eral bounces and non specular effects. The result shows thatcurrent
packetisation methods can be applied, however once again itbreaks
down for higher SIMD widths and, in addition, does not provide an
unbiased result.

Considering a processor architecture such as the CSX, the SIMD
width is large, 96 wide for the CSX600 chip used for the exper-
iments. This SIMD width consists of 96 ”processing elements”
or PEs. Each PE is similar to a VLIW processor, and it is the
large number of PEs operating in parallel that gives the processor
its computational power. With SIMD width this large, and likely
to grow larger in the future, different ways for harnessing the in-
creased computational power massively SIMD chips bring, need to
be found. The original intent of ray packets is to minimise the la-
tency of loading scene data before processing it. In our approach,
we separate path generation from path tracing which allows abin-
ning structure to be created that is inherently suited to parallelisa-
tion, by using several bins of path-atoms. This allows us to hide
latency with n-buffering the load/save operations, while being in-
sensitive to the coherence of the rays. The insensitivity tocoherence
means this approach is inherently more scalable as SIMD width in-
creases.

3.1 Path tracing and Path Generation

Traditionally path-tracing is recursive with respect to calculating
the final radiance value for each path. However, the generation of
the path from the camera to a light source can be separated from
calculating the actual radiance value. Further to this, theshading
of each vertex can be separated from the calculation of the radiance
value. Indeed, the calculation of the radiance value is onlya very
small part of the total calculation, shown to be less than 1% (see
results) of our computation in our experiments. Assuming perti-
nent data of each vertex of the path is stored during calculation, the
radiance value can be calculated at any point after the path is gen-
erated. The path generation process can be viewed then as a loop,
rather than a recursive process, following the pseudo code below.

while path 6= completed do
intersect ray with scene
generate shading details for intersection and new direction
from brdf
record new vertex in path

end while

Once the path has been generated, each vertex can be shaded inpar-
allel. Finally the radiance value of the path is calculated using the
normal path tracing recursive algorithm. However, as all the mate-
rial contributions, BRDFs, etc are already known, this calculation
is very small (less than 1%).

3.2 Binning Path-Atoms to form a Circular Buffer

The circular nature of path generation becomes significant when
attempting to parallelise path tracing, due to the variablelength of
paths. If we are dealing with a recursive algorithm, we must recurse
down to the level of the longest of the paths we are considering, not
calculating for the ones that have a shorter path length. This has
the obvious disadvantage of leaving the PE’s of the shorter paths
idle while the longer paths are computed. If the radiance value
calculation is postponed until after the paths are generated, we have
a better option. Each time the end of a path is reached on a PE, it
simply loads a new ray from the begining of a new path and starts
tracing.

This leads to a circular buffer model for generating the paths,
whereby in each loop the rays are intersected with the scene.The
intersection is subsequently processed and new direction calcu-
lated. The new vertex is recorded and then either the new direction
formed to a ray, or a new ray added. This leads to three separate
bins with operations to move between them, as shown in Figure1.
Each time a path is completed, the path is read out to another buffer
to be processed and the ray corresponding to the next path is fed in.
The algorithm loops around this buffer continuously, untilall the
paths required have been calculated.
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Figure 1: Circular Buffer

One elegant feature of this algorithm is the that of replacing a ray
which completes half way through, but the rest of the bin doesnot.
Instead of having to close the gap this leaves to keep the PE’sall
with data to process, a new ray can simply be dropped into its place
and the corresponding path space in the path bin started. This re-
moves the need for book keeping of which bin position corresponds
to which path. Another advantage is that none of the path needs to
be loaded to add a new vertex. Instead the number of vertices each
path has is kept, and the new vertex is saved into the following po-
sition in the path bin.

3.3 N-Buffering to hide latency

The memory on the ClearSpeed card consists of two parts, mono
memory and poly memory. Mono memory is a large block of shared
memory, similar in size and use to the RAM in a PC used by a com-
modity CPU. The poly memory is a small piece of private memory
on each PE, and can be viewed as similar to cache memory on a
CPU. That is, data to be processed on the PEs must be loaded from
mono memory to the poly memory of the PE it is to be processed on
before it can be used. The path-atom bins are stored in their entirety
in mono memory on the card. To process a SIMD width block of
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Figure 2: N-buffering allows the proceeding n results to be saved
and subsequent n blocks of data to be loaded while the currentbin
position is processed

path-atoms, they must be loaded from mono to poly memory, pro-
cessed, and the desired results saved back from poly to mono mem-
ory. In this way, the algorithm cycles through all of the path-atoms
in each bin, loading-processing-saving in SIMD width chunks of
the bin. First the ray bin is processed thus, then the intersection bin,
then the path bin. The data to be loaded may depend on the result
of a previous bins operation. For example the material needed for
shading depends on the object intersected. A small piece of data is
kept in poly memory between each bin to facilitate this. In the case
of loading the material to be shaded, the intersected object’s num-
ber would be kept in poly memory, and the address of the material
to be loaded calculated from it when the next bin is processed.

The constant loading and saving of data during the processing of the
bins introduces a large amount of latency, as the card has to wait
for the I/O operations to complete. Part of the speedup achieved
using ray packets is through having coherent rays that intersect the
same objects as they are traversed. Thus less scene data needs to be
loaded from RAM to the cache, as each ray can be intersected with
the same set of objects that are already in the cache. Insteadof using
coherency as a way of minimising latency, the bin structure allows
the loading and saving to be n-buffered to offset the latency. While
bin positionm is being processed,m+1,m+2, · · · ,m+n are being
loaded from memory. Similarly for saving, while bin position m is
being processed,m−1,m−2, · · · ,m−n are being saved to memory.
For n-buffering to work, the bins must be at leastn ·(numbero f PEs)
in length, so that a result being written to memory is not being read
from memory. Figure 2 shows how it works in the general case.
N-buffering can also be used to wrap loads/saves around between
each type of bin. As the finaln bin positions of a preceding bin are
processed, the firstn of the following bin are being loaded.

By using n-buffering, the latency introduced by the load andsave
operations necessary to process each block of path-atoms isoff-
set, being carried out concurrently with the processing of earlier or
later blocks respectively. As the latency is offset this way, there is
no need for the rays being traced to be coherent. This gives the pri-
mary advantage of our method over ray-packets. The length ofthe
paths, and where the paths start is entirely arbritrary. When using
unbiased methods such as path tracing, where the rays do not keep
coherence, this allows us to harness the power of wide width SIMD
architectures. Further more, arbritraty path segments canbe traced
as coherence is no longer an issue. In the case of bi-directional
path tracing, arbritrary and incoherent visibility tests are needed to
check path validity, and path-atom binning fits in with this too. As
well as this, methods such as selective rendering that use arbritrary
numbers of rays per pixel, often very low, are unsuited to coherent
packet tracing, as the benefits of selective rendering are based on

tracing fewer rays and interpolating the results. In these cases again
the method of path-atom binning is advantageous.

4 Implementation

Our implementation runs on the ClearSpeed CSX co-processorar-
chitecture. It is a multi-threaded array processor (MTAP),normally
utilised for traditional High Performance Computing (HPC)topics
such as scientific modelling. A MTAP co-processor shares some
characteristics of a multi-core CPU, and some of a stream proces-
sor such as a GPU. It has a standard RISC control unit with instruc-
tion fetch, cache and I/O mechanisms. Additionally it has the main
block of so called ’processing elements’ or PEs. Each of these PEs
consists of a register file, 6Kbytes of SRAM,a high speed I/O chan-
nel to adjacent PEs, an integer ALU and a 64-bit FPU. The 64-bit
FPU, which implements full IEEE double precision, is responsible
for the high throughput of 50 GFlops double precision. Branching
in code is handled via an enable state, in a method similar to predi-
cated instructions in some RISC CPUs. Figure 3 shows an overview
of the architecture.

Figure 3: ClearSpeed CSX chip architecture overview

From a parallel graphics perspective the CSX architecture offers an
interesting mix of the advantages of a stream procesor and multi-
core CPU. The current GPU architecture for comparison is Nvidia’s
G80 achitecture. Although advertised as a 128 core mutli threaded
scalar processor, in effect is a 32 width SIMD processor. This
is because each ”warp” of 32 threads is processed in SIMD. To
achieve the high performance the hardware is capable of, allthese
threads must run the same instructions. So when consideringhigh
throughput applications such as parallel rendering, the G80 archi-
tecture should be considered a 32 width SIMD processor, not a128
core scalar architecture. The CSX600 chip by comparison hasa
SIMD width of 96, which as described later is advantageous for the
wide SIMD algoritms detailed in this paper. A second point isthat
the G80 architecture doesn’t natively perform double precision, but
supports it through multiple cycles of single precision, while the
CSX architecture FPUs are double precision throughout.

From an algorithmic view, the subtle differences between a stream
processor and MTAP are significant. The stream processor model
consists of a host computer offloading very specific fine grained
chunks of work to the processor, processing it and returningit to
shared memory. The MTAP model is much closer to how a normal



CPU runs - the RISC control unit with a set of PEs model allows
a complete program to be run on the board. The onboard memory
is around that of a desktop PC - 1 to 4 GB, so, except for the most
complex scenes, the entire scene description can be held on the card
rather than on the host PC. Dedicated high speed buses between
the PEs is similar to those found in multi-core chips, and allows
algorithmic subtlety that isn’t possible on a stream processor such
as the G80. For example in the case where onlyn of the PEs succeed
in a task. It is often the case that the spread of the succesfuln is
random, and only those succesful are to be stored into a bin, for
further use. The high speed PE to PE buses can be used within
algorithms to assign ascending numbers to each succesful PEs. In
turn these ascending numbers can be used in addressing for saving
results back to main memory. Alternatively these results can be
retained in PE memory and while the PEs with unsuccesful task
can load more data. This is in contrast to a stream processor where
the results would have to all be unloaded, and the succesful ones
reloaded along with fresh data to fill the gaps.

Figure 4: Cornell Box Test scene, rendered in 480× 480 pixels,
1000 samples per pixel

4.1 Results

We used a simple Cornell Box scene (Figure 4) to test different as-
pects of the algorithm. The first thing we tested was the effect on
rendering times of n-buffering the load and save operations. Ta-
ble 1 shows our test results when using values ofn from 0 to 3.
0-buffering simply means that each load or save operation was car-
ried out when it occured in the code, with no attempt to offsetit.
To make comparison easier, the time recorded is the time taken for
1,000,000 path segments. Russian roulette was used to terminate
paths. We ran our algorithm only tracing the path segments, tracing
and direct lighting each path segment, and running the full render-
ing algorithm.

As can be seen in the results, as the value ofn rises, the render
time decreases. The gain in render time stops increasing once you
start to buffer more than once (double buffering). This is due to
the load/save operations acting on small pieces of data, around 10
double precision floats per PE. Our results show that computing the
path segments with direct lighting forms 99% of the time taken,
with only 1% of the computation taken up with recursively calcu-
lating the radiance values.

The second thing we tested was the effect of buffering different
combinations of the load / save operations. To test whether it was
either the load or save operations that slowed the algorithmmore,
we buffered only the loads, only the saves, both and neither.Ta-
ble 2 shows our results, again showing the time taken to compute
1,000,000 path segments. As can be seen, buffering either the load
or save operations gives a performance increase of around 10%

Level of Path Path Segment Full
Buffering Segments & Direct Lighting Computation

0 7.63 16.84 16.97
1 5.94 13.17 13.28
2 5.94 13.21 13.36
3 5.96 13.46 13.61

Table 1: Render times in seconds of differing scenes when varying
n in n-buffered computation

compared to not buffering, whereas buffering both gives just over
20% performance increase.

Type of Path Path Segment Full
Buffering Segments & Direct Lighting Computation

None 7.63 16.84 16.97
Load 6.64 14.81 14.96
Save 6.85 15.49 15.63
Both 5.94 13.17 13.28

Table 2: How number of samples per pixel affects rendering times
in seconds

Finally we rendered the scene in Figure 4 to a size of 480×480 pix-
els, with 1000 samples per pixel. Using double buffering forboth
load and save operations, the scene took 3036.37 seconds, or50.6
minutes. This gives an average of just over 150,000 incoherent path
segments a second, unshaded, or 750,000 path segments a second
with each path segments with a single shadow ray per path segment.

5 Conclusions and Future Work

We presented a new approach to the classic ray-tracing problem
of memory access latency. Instead of grouping together packets
of coherent rays, with all the limitations this implies, we reworked
the problem to set aside the recursive calculation portion from the
main computation. This allows us to bin the operation as a circular
buffer. This has several important benifits. Firstly it makes it simple
to keep the hardware with enough work so that it doesn’t standidle.
Secondly it allows us to hide the latency using n-buffering.Thirdly,
as latency is not coming from coherency, the type of rays processed
is not important. Thus multiple bounces suffer no penalties, so un-
biased techniques are possible. Also techniques that naturally result
in incoherent ray processing can be used, such as selective render-
ing, and time-constrained rendering [Debattista 2006]. Anaverage
of 150,000 incoherent path segments a second, traced and shaded,
was achieved for a simple Cornell box scene. The code used to gen-
erate these figures is not optimised, instead this is proof ofconcept
work, to test our alternative approach to latency reduction.

Our method could be extended simply with the implementationof
bi-directional path tracing [Lafortune and Willems 1993].This
could be achieved by separately tracing both a forward and light
path though the scene. Indeed, both paths could be stored contigu-
ously in memory, with the starting pint for the light and eye paths
calculated at the same time. Then as soon as the light path is com-
plete, the pointer to the path can be moved on to the start of the eye
path, and processing continued. Once both paths are traced,each
vertex from the forward path could be combined with every ver-
tex in the light path. The required visibility test could be handled
within the circular buffer framework.

Our method currently has not addressed the issue of acceleration
structures, in terms of both building and traversing. Current work



favours the use of bounding volume hierarchies (BVH) [Wald et al.
2007a] with recent work on their use on parallel architectures [Ize
et al. 2007]. Adapting this work to run on the ClearSpeed archi-
tecture is a clear next step. The current method already loads the
object data to be intersected, similar to having a single leaf node. To
extend to using an acceleration stucture, the intersectionoperation
would have to be extended. A circular buffer similar in principle
to the overall method presented here could be used, with an addi-
tional temporary bin would be needed. Each SIMD width block of
rays and current leaf to be intersected with would be loaded and
intersected. Those intersecting would have their details saved as in
the current methods. The non-intersecting rays would be traversed
to find the next leaf to be intersected with, and this result saved to
the the temporary bin. Once all of the rays had been tested once,
the temporary bin would have all the non-intersected rays and the
next leaf for each ray to be tested against. The process couldbe
repeated again, with the original bin being used to store thenext
round of un-intersected results. This would continue, the temporary
and original bin swapping each time and with the number of non-
intersecting rays falling until all have been intersected fully with
the scene. The bins would only contain rays that still neededin-
tersecting, meaning a full block of rays and objects can be loaded
each time, keeping the processor fully working. As well as the rays
and objects to be intersected, enough of the acceleration structure
to traverse the ray to find the next leaf to intersect is necessary. Ob-
ject hierarchies such as BVH may be the best suited, as the internal
nodes of a sub-tree could be loaded (without the object data in the
leaves). Clearly the next step is to research how large a sub-tree
could be loaded, what if any impact this has on the algorithm (for
example if only half a sub-tree can be loaded, how could the cases
where this is insufficient be handled best).
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