Parallel Path Tracing using Incoherent Path-Atom Binning

Piotr Dubla
Warwick Digital Laboratory,
P.B.Dubla@warwick.ac.uk

David Coulthurst
University of Bristol,
Davec@cs.bris.ac.uk

Warwick Digital Laboratory,
K.Debattista@warwick.ac.uk

Simon Mclintosh-Smith
ClearSpeed Technology,
Simon@clearspeed.com

Kurt Debattista

Alan Chalmers

Warwick Digital

Laboratory,

A.G.Chalmers@warwick.ac.uk

Abstract

Current parallel graphics algorithms minimise memory asde-
tency by tracing packets of coherent rays. This coheremuyeter,
breaks down after several bounces, and is unsuited to aatete
techniques such as selective rendering. This paper pseseninbi-
ased path tracing algorithm which is insensitive to the cehey of
the rays traced, allowing it to run on diverse architectimekiding
massively SIMD processors. Bins of path-atoms are creatdd a
processed to form a path tracing circular buffer. Latendyidslen
by n-buffering the load/save operations between hins. Wieote
strate our approach as an implementation on the massivajigla
SIMD architecture, the ClearSpeed CSX600.

Keywords: path tracing, global illumination, parallel graphics

1 Introduction

The Rendering Equation as first presented in [Kajiya 1986] de
scribed all the illumination at any given point in a scene ara
integral equation representing all the reflections in tlemec In the
same paper the concept of path tracing was introduced, hastoc
tic method for solving the rendering equation. Non branghin
paths from the camera to light sources are traced throughinac
tersection with the scene geometry, as compared to Whiggd r
tracing [Whitted 1980] where at each intersection both slgec
and shadow rays are sampled. In [Cook et al. 1984] this is ex-
tended such that at each intersection, the entire hemisjgheam-
pled to gather an estimate. Path tracing requires many naone s
ples per pixel than ray-tracing, but delivers an unbiasexlilte
Bi-directional path tracing was independently developgdobth
[Lafortune and Willems 1993] and [Veach and Guibas 1994graf
noting that not all significant light transport paths areilgdeund
from starting at the camera.

Both path tracing and ray tracing require a lot of computetio
power to achieve a high-fidelity result. Traditional metbadd re-

duce computational time by parallel processing have etqaaio-

herence. However, such techniques limit the use of otherlaee

tion techniques, such as selective rendering, and are ribsuited

to modern wide-width SIMD architectures.

In this paper we present a novel approach which is able to ex-
ploit the performance of modern wide-width SIMD processord
significantly reduces latency, not through coherence, putldia
buffering. We reformulate the recursive nature of rendgiirio a

set of basic atomic operations, which are inherently suitepiar-
allelisation. The current way of formulating rendering sla®ot
map itself well to all architectures, and we show that if weahk

the computation into simple atomic instructions we can adap
group such instructions according to the hardware requitsne

We demonstrate our approach on the ClearSpeed CSX arcinéect
a massively-parallel SIMD machine. We show the latency @an b

reduced with careful grouping of atomic instructions iniosh This
allows us to reduce latency and improve perfromance witheut
lying on the coherence commonly associated with fast ragirtga
methods, enabling our method to be used for multiple bouludzag
illumination (GI) solutions and selective rendering.

2 Related Work

Previous parallel rendering work has tended to focus onnay t
ing, and on the use of commodity CPUs or GPUs. In [Purcell
2004], significant speedup was achieved through adaptegai
tracing algorithm to a stream processor model. Purcellstiswed

in [Purcell et al. 2003] how the photon mapping algorithmiddae
adapted to run on comodity GPUs. However this is only an appro
imation of true GI methods.

An alternative approach is to design hardware specificaliyrbic-
ing rays. In [Sven Woop and Slusallek 2005] a hardware ragetr
was implemented. Ray-scene intersection using k-d trepso-a
grammable shading unit and the ability to handle the reconsec-
essary for ray tracing each have dedicated hardware on the ch
Specific hardware has the disadvantage of needing chipigedés

a new algorimthm emerges, such as the new accelerationstac
being developed which are optimised for dynamic scenesdWal
etal.].

Fast ray-tracing has now become possible on commidity P@s. T
concept of ray packets [Wald et al. 2001] has come to dominate
attempts to harness the new SIMD instructions in modern CPUs
The original techniques of grouping rays into coherent ptko
make use of the 4-SIMD CPU instructions has been extendezkto u
much larger packets. These techniques form a conservativedo

to the ray packets and use this to avoid unnecessary intienrsec
tests and traversal steps. Dmitriev et al. [Dmitriev et &I04
first proposed this for triangle intersections, with Reelett al.
[Reshetov et al. 2005] extending this to kd-tree traverEhis was
then developed further to both grids [Wald et al. 2006] andBV
[Wald et al. 2007a). However, all these techniques fundaatign
rely on using coherent ray packets.

Perceptually adaptive rendering techniques have achisiggfi-
cant performance improvements for global illuminationcaithms
by exploiting knowledge of the human visual system [Mysz&kiv
et al. 2001]. In particular, selective rendering, compukese ar-
eas of a scene to which a viewer is attending in high qualitye T
remainder of the scene is rendered at a much lower quality, an
thus at a much lower computational cost, without the vievesndp
aware of this quality difference [Yee et al. 2001; Debaitiz006;
Chalmers et al. 2006]. Adaptive techniques in general areaid
urally coherent [Dubla et al. 2008] as the viewer may be diten
to non-coherent regions throughout the scene.

3 Incoherent Path-Atom Binning Theory
and Framework

Current parallel ray tracing techniques have become venysied
on the concept of ray packets, as introduced in [Wald et &1P0
The original intent of ray packets was to minimise the layeot
loading scene data before processing it. While this teclawgprks
well for narrow-width SIMD processors and primary rays, lfoge
width SIMD global illumination it has severe drawbacks. Ragk-
ets provide speed up where up te8and 16<16 packets are used,
usually however this breaks down for larger packets, witlo@:-c
sequential loss of performance. Also, the coherence brdaks
quickly, and the current work focuses on a single bounce at mo
[Wald et al. 2007b]. In [Boulos et al. 2007], the authors exed
whether packetised ray tracing techniques could be extetocsev-
eral bounces and non specular effects. The result showsutrant
packetisation methods can be applied, however once adaigaks
down for higher SIMD widths and, in addition, does not pravah
unbiased result.

Considering a processor architecture such as the CSX, & SI
width is large, 96 wide for the CSX600 chip used for the exper-
iments. This SIMD width consists of 96 "processing eleménts
or PEs. Each PE is similar to a VLIW processor, and it is the
large number of PEs operating in parallel that gives the ggsar

its computational power. With SIMD width this large, andelik

to grow larger in the future, different ways for harnessihg in-
creased computational power massively SIMD chips bringdnie

be found. The original intent of ray packets is to minimise
tency of loading scene data before processing it. In ourcambr,
we separate path generation from path tracing which allobis-a
ning structure to be created that is inherently suited talfsisa-
tion, by using several bins of path-atoms. This allows uside h
latency with n-buffering the load/save operations, whiéénly in-
sensitive to the coherence of the rays. The insensitivitpterence
means this approach is inherently more scalable as SIMOhwrnielt
creases.

3.1 Path tracing and Path Generation

Traditionally path-tracing is recursive with respect tdcatating
the final radiance value for each path. However, the geoerati
the path from the camera to a light source can be separated fro
calculating the actual radiance value. Further to this,steding
of each vertex can be separated from the calculation of thianee
value. Indeed, the calculation of the radiance value is ankery
small part of the total calculation, shown to be less than $ée (
results) of our computation in our experiments. Assumingipe
nent data of each vertex of the path is stored during caloulathe
radiance value can be calculated at any point after the pajan-
erated. The path generation process can be viewed then ap,a lo
rather than a recursive process, following the pseudo cebbevb
while path £ completed do
intersect ray with scene
generate shading details for intersection and new dinectio
from brdf
record new vertex in path
end while

Once the path has been generated, each vertex can be shpded in
allel. Finally the radiance value of the path is calculatethg the
normal path tracing recursive algorithm. However, as a@lriate-
rial contributions, BRDFs, etc are already known, this gktion

is very small (less than 1%).

3.2 Binning Path-Atoms to form a Circular Buffer

The circular nature of path generation becomes significdrenw
attempting to parallelise path tracing, due to the varisdagth of
paths. If we are dealing with a recursive algorithm, we mestirse
down to the level of the longest of the paths we are consigeriat
calculating for the ones that have a shorter path lengths fias
the obvious disadvantage of leaving the PE’s of the shorérsp
idle while the longer paths are computed. If the radianceeval
calculation is postponed until after the paths are gengrate have

a better option. Each time the end of a path is reached on @ PE, i
simply loads a new ray from the begining of a new path andsstart
tracing.

This leads to a circular buffer model for generating the path
whereby in each loop the rays are intersected with the scEme.
intersection is subsequently processed and new directtouc
lated. The new vertex is recorded and then either the newtitire
formed to a ray, or a new ray added. This leads to three separat
bins with operations to move between them, as shown in Figure
Each time a path is completed, the path is read out to anotifier b

to be processed and the ray corresponding to the next patt is.f
The algorithm loops around this buffer continuously, uatilthe
paths required have been calculated.

for each completed
path
Rays to
be traced

Next ray
in path
generated

Active
paths'
details

Rays from new pathsl

Rays
intersected
with scene

Intersection
details

-
Intersection
materials
fetched and
new vertex
calculated

Completed
paths radiance
values
calculated

Figure 1: Circular Buffer

One elegant feature of this algorithm is the that of replg@rray
which completes half way through, but the rest of the bin dusts
Instead of having to close the gap this leaves to keep the &E’s
with data to process, a new ray can simply be dropped intdatep
and the corresponding path space in the path bin started. réhi
moves the need for book keeping of which bin position cowadp
to which path. Another advantage is that none of the pathsed
be loaded to add a new vertex. Instead the number of vertas e
path has is kept, and the new vertex is saved into the follpwi:
sition in the path bin.

3.3 N-Buffering to hide latency

The memory on the ClearSpeed card consists of two parts, mono
memory and poly memory. Mono memory is a large block of shared
memory, similar in size and use to the RAM in a PC used by a com-
modity CPU. The poly memory is a small piece of private memory
on each PE, and can be viewed as similar to cache memory on a
CPU. That is, data to be processed on the PEs must be loaded fro
mono memory to the poly memory of the PE itis to be processed on
before it can be used. The path-atom bins are stored in thigiety

in mono memory on the card. To process a SIMD width block of

bin positions is

e -
Data from this bin

position is currently === m

being processed m+1

Data from these m+2

bin positionsis @} — — — — — — -
being loaded m+n

96 Elements wide

(SIMD width of chip)

Figure 2: N-buffering allows the proceeding n results to aees
and subsequent n blocks of data to be loaded while the curhent
position is processed

path-atoms, they must be loaded from mono to poly memory, pro
cessed, and the desired results saved back from poly to mene m
ory. In this way, the algorithm cycles through all of the patbms

in each bin, loading-processing-saving in SIMD width chaimf
the bin. Firstthe ray bin is processed thus, then the intéosebin,
then the path bin. The data to be loaded may depend on thé resul
of a previous hins operation. For example the material re:éale
shading depends on the object intersected. A small piecatafig
kept in poly memory between each bin to facilitate this. ka thse

of loading the material to be shaded, the intersected dbjeam-

ber would be kept in poly memory, and the address of the naéteri
to be loaded calculated from it when the next bin is processed

The constant loading and saving of data during the proogséithe
bins introduces a large amount of latency, as the card hasito w
for the 1/0O operations to complete. Part of the speedup aetlie
using ray packets is through having coherent rays thatsetethe
same objects as they are traversed. Thus less scene dasambed
loaded from RAM to the cache, as each ray can be intersectad wi
the same set of objects that are already in the cache. Insteaihg
coherency as a way of minimising latency, the bin structliosva

the loading and saving to be n-buffered to offset the late¥dyile

bin positionmis being processedy+ 1,m+2,---,m+nare being
loaded from memory. Similarly for saving, while bin positio is
being processedn—1,m—2,---,m—n are being saved to memory.
For n-buffering to work, the bins must be at leastnumberof PEs)

in length, so that a result being written to memory is not geaad
from memory. Figure 2 shows how it works in the general case.
N-buffering can also be used to wrap loads/saves aroundebetw
each type of bin. As the final bin positions of a preceding bin are
processed, the firstof the following bin are being loaded.

By using n-buffering, the latency introduced by the load aade
operations necessary to process each block of path-atonff is
set, being carried out concurrently with the processingpolier or
later blocks respectively. As the latency is offset this whgre is
no need for the rays being traced to be coherent. This gieegrth
mary advantage of our method over ray-packets. The lengtieof
paths, and where the paths start is entirely arbritrary. Weng
unbiased methods such as path tracing, where the rays deepot k
coherence, this allows us to harness the power of wide wiktbS
architectures. Further more, arbritraty path segmentdedraced
as coherence is no longer an issue. In the case of bi-dinadtio
path tracing, arbritrary and incoherent visibility tests aeeded to
check path validity, and path-atom binning fits in with thost As
well as this, methods such as selective rendering that bsitrary
numbers of rays per pixel, often very low, are unsuited toceceht
packet tracing, as the benefits of selective rendering asedban

tracing fewer rays and interpolating the results. In theses again
the method of path-atom binning is advantageous.

4 Implementation

Our implementation runs on the ClearSpeed CSX co-processor
chitecture. Itis a multi-threaded array processor (MTA®ymally
utilised for traditional High Performance Computing (HRGDics
such as scientific modelling. A MTAP co-processor sharesesom
characteristics of a multi-core CPU, and some of a strearmmegro
sor such as a GPU. It has a standard RISC control unit withuioist
tion fetch, cache and 1/0O mechanisms. Additionally it hasrifain
block of so called 'processing elements’ or PEs. Each ofetliriss
consists of a register file, 6Kbytes of SRAM,a high speed Héne

nel to adjacent PEs, an integer ALU and a 64-bit FPU. The 64-bi
FPU, which implements full IEEE double precision, is resgible

for the high throughput of 50 GFlops double precision. Bhang

in code is handled via an enable state, in a method similaretdip
cated instructions in some RISC CPUs. Figure 3 shows an ieverv
of the architecture.

Figure 3: ClearSpeed CSX chip architecture overview

From a parallel graphics perspective the CSX architectffieesoan
interesting mix of the advantages of a stream procesor art- mu
core CPU. The current GPU architecture for comparison islidig
G80 achitecture. Although advertised as a 128 core mutithed
scalar processor, in effect is a 32 width SIMD processor. sThi
is because each "warp” of 32 threads is processed in SIMD. To
achieve the high performance the hardware is capable dhede
threads must run the same instructions. So when consideighg
throughput applications such as parallel rendering, the &8hi-
tecture should be considered a 32 width SIMD processor, ha8a
core scalar architecture. The CSX600 chip by comparisonahas
SIMD width of 96, which as described later is advantageoug®
wide SIMD algoritms detailed in this paper. A second poirthist
the G80 architecture doesn't natively perform double ieai, but
supports it through multiple cycles of single precision,ile/tihe
CSX architecture FPUs are double precision throughout.

From an algorithmic view, the subtle differences betweetieam
processor and MTAP are significant. The stream processoeimod
consists of a host computer offloading very specific fine gain
chunks of work to the processor, processing it and returitibg
shared memory. The MTAP model is much closer to how a normal

CPU runs - the RISC control unit with a set of PEs model allows
a complete program to be run on the board. The onboard memory
is around that of a desktop PC - 1 to 4 GB, so, except for the most
complex scenes, the entire scene description can be hethe catd
rather than on the host PC. Dedicated high speed buses Imetwee
the PEs is similar to those found in multi-core chips, andved
algorithmic subtlety that isn't possible on a stream precesuch

as the G80. For example in the case where amlfthe PEs succeed

in a task. It is often the case that the spread of the succesful
random, and only those succesful are to be stored into a tin, f

Level of Path Path Segment Full
Buffering || Segments| & Direct Lighting | Computation
0 7.63 16.84 16.97
1 5.94 13.17 13.28
2 5.94 13.21 13.36
3 5.96 13.46 13.61

Table 1: Render times in seconds of differing scenes wheyingr
n in n-buffered computation

further use. The high speed PE to PE buses can be used within

algorithms to assign ascending numbers to each succes$ulIRE
turn these ascending numbers can be used in addressingifog sa
results back to main memory. Alternatively these results loa
retained in PE memory and while the PEs with unsuccesful task
can load more data. This is in contrast to a stream procedserew
the results would have to all be unloaded, and the succesgsd o
reloaded along with fresh data to fill the gaps.

Figure 4: Cornell Box Test scene, rendered in 48480 pixels,
1000 samples per pixel

4.1 Results

We used a simple Cornell Box scene (Figure 4) to test difteaen
pects of the algorithm. The first thing we tested was the effac
rendering times of n-buffering the load and save operatiores
ble 1 shows our test results when using values fifom 0 to 3.
0-buffering simply means that each load or save operatianoaa
ried out when it occured in the code, with no attempt to offset
To make comparison easier, the time recorded is the time take
1,000,000 path segments. Russian roulette was used tan&emi
paths. We ran our algorithm only tracing the path segmernztsing
and direct lighting each path segment, and running the énitler-
ing algorithm.

As can be seen in the results, as the valua ofes, the render
time decreases. The gain in render time stops increasingymnc
start to buffer more than once (double buffering). This ig do
the load/save operations acting on small pieces of datandrt0
double precision floats per PE. Our results show that comgtittie
path segments with direct lighting forms 99% of the time take
with only 1% of the computation taken up with recursivelyatal
lating the radiance values.

The second thing we tested was the effect of buffering dffer
combinations of the load / save operations. To test whetheas
either the load or save operations that slowed the algorittore,

we buffered only the loads, only the saves, both and neithay.
ble 2 shows our results, again showing the time taken to ctenpu
1,000,000 path segments. As can be seen, buffering eitbdodd

or save operations gives a performance increase of arou¥td 10

compared to not buffering, whereas buffering both gives guer
20% performance increase.

Type of Path Path Segment Full

Buffering || Segments| & Direct Lighting | Computation
None 7.63 16.84 16.97
Load 6.64 14.81 14.96
Save 6.85 15.49 15.63
Both 5.94 13.17 13.28

Table 2: How number of samples per pixel affects renderimgsi
in seconds

Finally we rendered the scene in Figure 4 to a size 04880 pix-

els, with 1000 samples per pixel. Using double bufferinglfoth

load and save operations, the scene took 3036.37 secorsi3.6or
minutes. This gives an average of just over 150,000 incol@ath
segments a second, unshaded, or 750,000 path segmentsd seco
with each path segments with a single shadow ray per pathesggm

5 Conclusions and Future Work

We presented a new approach to the classic ray-tracing ggrobl
of memory access latency. Instead of grouping togethergtack
of coherent rays, with all the limitations this implies, waswvorked
the problem to set aside the recursive calculation portiomfthe
main computation. This allows us to bin the operation as@utar
buffer. This has several important benifits. Firstly it makesimple
to keep the hardware with enough work so that it doesn’t sidied
Secondly it allows us to hide the latency using n-bufferiflirdly,

as latency is not coming from coherency, the type of raysqased
is not important. Thus multiple bounces suffer no penglgesun-
biased techniques are possible. Also techniques thatadigttesult

in incoherent ray processing can be used, such as seleetiderr
ing, and time-constrained rendering [Debattista 2006].a%erage
of 150,000 incoherent path segments a second, traced adedsha
was achieved for a simple Cornell box scene. The code usezhto g
erate these figures is not optimised, instead this is proobotept
work, to test our alternative approach to latency reduction

Our method could be extended simply with the implementation
bi-directional path tracing [Lafortune and Willems 1993J his
could be achieved by separately tracing both a forward agid li
path though the scene. Indeed, both paths could be storéidgwon
ously in memory, with the starting pint for the light and e\ahs
calculated at the same time. Then as soon as the light patimis ¢
plete, the pointer to the path can be moved on to the stareafyh
path, and processing continued. Once both paths are traael,
vertex from the forward path could be combined with every ver
tex in the light path. The required visibility test could banlklled
within the circular buffer framework.

Our method currently has not addressed the issue of actiefera
structures, in terms of both building and traversing. Cutrigork

favours the use of bounding volume hierarchies (BVH) [Waldle
2007a] with recent work on their use on parallel architeztize

et al. 2007]. Adapting this work to run on the ClearSpeediarch
tecture is a clear next step. The current method alreadys |teel
object data to be intersected, similar to having a singlierlede. To
extend to using an acceleration stucture, the interseopenation
would have to be extended. A circular buffer similar in pijple

to the overall method presented here could be used, with dn ad
tional temporary bin would be needed. Each SIMD width blotk o
rays and current leaf to be intersected with would be loadet a
intersected. Those intersecting would have their detailed as in
the current methods. The non-intersecting rays would hwetsad
to find the next leaf to be intersected with, and this resuledao
the the temporary bin. Once all of the rays had been testeg, onc
the temporary bin would have all the non-intersected raygstha
next leaf for each ray to be tested against. The process teuld
repeated again, with the original bin being used to storenthe
round of un-intersected results. This would continue, énegorary
and original bin swapping each time and with the number of non
intersecting rays falling until all have been intersectalllyfwith
the scene. The hins would only contain rays that still needed
tersecting, meaning a full block of rays and objects can bdéd
each time, keeping the processor fully working. As well asrtys
and objects to be intersected, enough of the acceleratioctiste

to traverse the ray to find the next leaf to intersect is necgs©b-
ject hierarchies such as BVH may be the best suited, as thmait
nodes of a sub-tree could be loaded (without the object datfzei
leaves). Clearly the next step is to research how large drseb-
could be loaded, what if any impact this has on the algoritfan (
example if only half a sub-tree can be loaded, how could tsesa
where this is insufficient be handled best).

References

BouLos, S., BObwARDS, D., LACEWELL, J. D., KNIss, J.,
KAuTz, J., WALD, |., AND SHIRLEY, P. 2007. Packet-based
Whitted and Distribution Ray Tracing. Proceedings of Graph-
ics Interface 2007.

CHALMERS, A., DEBATTISTA, K., AND DOS SANTOS, L. 2006.
Selective rendering: Computing only what you seeGhaphite
2006, ACM SIGGRAPH, 123-131.

CookK, R. L., PORTER, T., AND CARPENTER L. 1984. Dis-
tributed ray tracing. §GGRAPH Comput. Graph. 18, 3, 137—
145.

DEBATTISTA, K., SUNDSTEDT, V., PEREIRA, F., AND
CHALMERS, A. 2005. Selective parallel rendering for high-
fidelity graphics. IrProceedings of Theory and Practice of Com-
puter Graphics 2005, Eurographics Association, 59-66.

DEBATTISTA, K. 2006. Selective rendering for high-fidelity graph-
ics. PhD thesis, University of Bristol.

DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. 2004. Faster ray
tracing with simd shaft culling. Research Report MPI-1-280
006, Max-Planck-Institut fur Informatik, Saarbriick&ermany,
December.

DuUBLA, P., HALMERS, A., AND DEBATTISTA, K. 2008. An
analysis of cache awareness for interactive selectiveerargl
In Communi cations Papers proceedings, WSCG, V. Skala, Ed.

1zE, T., WALD, |., AND PARKER, S. G. 2007. Asynchronous BVH
Construction for Ray Tracing Dynamic Scenes on ParalletiMul

Core Architectures. IfProceedings of the 2007 Eurographics
Symposium on Parallel Graphics and Visualization.

KAJIYA, J. T. 1986. The rendering equaticd@GGRAPH Comput.
Graph. 20, 4, 143-150.

LAFORTUNE, E. P.,AND WILLEMS, Y. D. 1993. Bi-directional
Path Tracing. IrProceedings of Third International Conference
on Computational Graphicsand Visualization Techniques (Com-
pugraphics’93), H. P. Santo, Ed., 145-153.

Myszkowskl, K., TAWARA, T., AKAMINE, H., AND SEIDEL,
H.-P. 2001. Perception-guided global illumination salntfor
animation rendering. 8 GGRAPH 2001, Computer Graphics
Proceedings, ACM Press / ACM SIGGRAPH, E. Fiume, Ed.,
221-230.

OSULLIVAN, C., H. S. M. Y. M. R. 2004. Perceptually adaptive
graphics.Eurographics 2004, STAR, 141-164.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. Rnoceedings of the ACM S G-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, 41-50.

PURCELL, T. J. 2004. Ray tracing on a stream processor. PhD
thesis, Stanford, CA, USA. Adviser-Patrick M. Hanrahan.

RESHETOV A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
level ray tracing algorithm. I8 GGRAPH '05. ACM SG-
GRAPH 2005 Papers, ACM, New York, NY, USA, 1176-1185.

SVEN WOOR J. S.,AND SLUSALLEK, P. 2005. Rpu: A pro-
grammable ray processing unit for realtime ray tracingPio-
ceedings of ACM SSGGRAPH 2005.

VEACH, E., AND GUIBAS, L. J. 1994. Bidirectional Estimators
for Light Transport. 147 — 161.

WALD, I., MARK, W. R., GINTHER, J., BouLos, S., Iz, T.,
HUNT, W., PARKER, S. G.,AND SHIRLEY, P. State of the Art
in Ray Tracing Animated Scenes. Burographics 2007 Sate of
the Art Reports.

WALD, I|., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P.
2001. Interactive rendering with coherent ray tracing.Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2001,
Blackwell Publishers, Oxford, A. Chalmers and T.-M. Rhyne,
Eds., vol. 20, 153-164. available at http://graphicsris.u
sh.de/ wald/Publications.

WALD, I., I1zE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray Tracing Animated Scenes using Coherent Grid
Traversal. ACM Transactions on Graphics, 485-493. (Proceed-
ings of ACM SIGGRAPH 2006).

WALD, |., BOULOS, S.,AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies
ACM Transactions on Graphics 26, 1.

WALD, I., GRIBBLE, C. P., BouLOS, S., AND KENSLER, A.
2007. SIMD Ray Stream Tracing - SIMD Ray Traversal with
Generalized Ray Packets and On-the-fly Re-Ordering. Tech.
Rep. UUSCI-2007-012.

WHITTED, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6, 343-349.

YEE, H., PATTANAIK , S.,AND GREENBERG D. P. 2001. Spa-
tiotemporal sensitivity and visual attention for efficieahdering
of dynamic environmentsACM Trans. Graph. 20, 1, 39-65.

